Proven 3rd Party Test Results

Kleenoil USA Inc. knew through our over 20 years of happy customers and successful oil analysis test results that our bypass filter system was the best on the market.

However, we do realize that it is one thing to tout your filters effectiveness and another thing entirely to have a reputable 3rd party research institute do an ISO certified beta test on it.

Kleenoil USA Inc spared no expense and decided to have the highly prestigous and reputable research institute, do an ISO certified beta test on the Kleenoil Bypass Filter System!

Now a little background on beta testing from Noria Corporation:

Investigations into the causes of breakdowns in hydraulic systems have shown that the majority of hydraulic-related failures can be attributed to high levels of solid contamination in the fluid. High levels of solid contamination are usually the result of inadequate filtration. Effective filtration in hydraulic systems prevents breakdowns and increases the life expectancy of important and expensive components. The high cost of component repairs and system downtime can be kept to a minimum only through a preventive maintenance program that includes using and maintaining the proper system filtration.

The constantly increasing demands made on hydraulic components means that today’s systems must be equipped with filters that have a high rate of particle removal efficiency at the required micron rating.

The correct number and type of filters required must be taken into account early in the system design phase. Likewise, the ability to change the filter on the run - often requiring the use of a duplex arrangement - is an important preinstallation consideration. The good design intentions of the application design engineers are often overridden by the sometimes more powerful dictates of price and competition. System suppliers and purchasers often change the filter strategy by changing the filter size, micron rating and the number of filters. This is an easy way to lower the overall system price. The equipment user may then have to add filtration to achieve the required system performance after the system is purchased, installed and operating.

ISO 16889:1999 Multi-pass Test

The purpose of the multi-pass test standard is to have a lab-based procedure that will provide reproducible test data that can be used to evaluate the dirt-holding capacity and the particulate removal efficiency (Beta Ratio) of a hydraulic fluid power filter element. The test measures the particulate removal efficiency as it relates to the ingression of dirt particles creating increased differential pressure over element life (Beta Stability).

Test dust of a known particle size distribution is added to the fluid in the injection reservoir until it reaches a specified concentration in grams of contaminant per liter of test fluid. The fluid in the injection reservoir is then pumped continuously into the clean fluid in the test reservoir, thereby creating a low concentration test solution. This test solution is circulated continuously to the test filter at a constant flow rate. The test solution is filtered by the element under test and travels back to the test reservoir (along with any unfiltered particles). This cleaned fluid is contaminated again by the injection fluid, and is once again pumped to the test filter.

During the test, the element differential pressure, the upstream and downstream particle counts and the amount of injected contaminant are continuously monitored. In most instances, the multi-pass test is completed when the element differential pressure reaches the specified limit or the Beta Ratios fall below a specified level. (Figure 1)

Calculation of Beta Ratios

Beta Ratios for filter elements are determined during the multi-pass test as outlined above. The ISO 16889:1999 standard for multi-pass testing states that this test is applicable for filter elements that exhibit an average Beta Ratio greater than or equal to 75. Individual element manufacturers determine the Beta Ratio specification for their elements. Most manufacturers are currently using a minimum Beta Ratio of 200 for a particular micron rating.

A single multi-pass test is divided into many smaller time segments. During each of these counting periods, the number of particles of a specific size - size x - and greater upstream of the filter is totaled and the number of size x and greater particles downstream of the filter is totaled. The number of particles found upstream of the filter divided by the number of particles found downstream of the filter equals the beta value of the element at the given particle size during that counting period (Figure 2).

Figures 3 and 4 illustrate the beta values vs. the differential pressure across two filter elements at the end of each counting period throughout the entire test.

Calculation of Average Beta Ratios

To calculate the average Beta Ratio, the total test time taken to arrive at the element differential pressure alarm setting (or customer-specified value) is divided into 10 equal time frames. In each time frame, the sum (total number) of upstream particles from each counting period is calculated, then averaged. Accordingly, the downstream particles are summed and averaged. These values are then graphed against the differential pressure at the end of the time frame (Figures 3 and 4). This allows for the Beta Ratio to be determined at different differential pressures.

Calculation of a Single Beta Ratio for Length of Test

A single beta value for the duration of the test is derived by summing the average upstream particle counts from each of the 10 time frames, and dividing this total by the sum of the average downstream particle counts from each of the 10 time frames. These values are then used to determine the particle size that would yield the average beta ratio of 2, 10, 75, 100, 200 or 1,000.


Filter element efficiency for a particular micron rating is determined by the Beta Ratio for that micron rating. The calculation is Beta Ratio minus one divided by the Beta Ratio then multiplied by 100. For example, an element with a Beta Ratio of 200 for a particular micron rating has the following efficiency:

(200-1)/200 or
99.5 percent efficient

Table 1 shows the Beta Ratio, corresponding efficiency and the number of particles that will pass to the downstream side of the element for each 100,000 particles seen at the upstream side of the element.

Proven 3rd Party Test Results!

In the test, they used 120 liters of contaminated hydraulic oil, which was 23/18 ISO code oil (41,517 – 6 micron particles and 1,710 – 14 micron particles).

For the duration of the 6 hour test with the Kleenoil KU85, they were able to clean the oil up to a 14/11 ISO code (145 – 6 micron particles and 14 – 14 micron particles)

See Kleenoil USA Inc's proven 3rd party test results below: